If it's not what You are looking for type in the equation solver your own equation and let us solve it.
-5x^2-2x+30=0
a = -5; b = -2; c = +30;
Δ = b2-4ac
Δ = -22-4·(-5)·30
Δ = 604
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{604}=\sqrt{4*151}=\sqrt{4}*\sqrt{151}=2\sqrt{151}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-2)-2\sqrt{151}}{2*-5}=\frac{2-2\sqrt{151}}{-10} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-2)+2\sqrt{151}}{2*-5}=\frac{2+2\sqrt{151}}{-10} $
| 240/30=x/23 | | -2=-18-5y | | 3(x-8)=-24+3x | | 3(2y-+3)=4y+3 | | 240/3=x/23 | | z-9=18 | | A=20-x(x) | | 4/7=x/422x/48=3/12 | | (x+3)/3=6 | | 16x^2-4x-24=0 | | x–(–19)=12 | | 6x+9+2x-4=180 | | 0.01/0.5=0.75x/0.75 | | -24/5=-31=2m | | 3x/2=6x= | | 4(x-3)=14x+13 | | 3x+123=171 | | y+19=-40 | | 7x^2-9x^2+3=0 | | k2-4k+24=0 | | 2x+10=1804x+10=1804x+80=180 | | 2x+5/2=3 | | 5-15=40x | | (3x+2)=(5x+2 | | 5x/2-12=23 | | 4(3/4x-4)=2 | | 2n(33-n)=0 | | 3(1/3x-1=7 | | 0.58y=460 | | m²-8m=-16 | | 3x-10x-1=0 | | 3/2(2x+4)=8 |